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Influence of mass polydispersity on dynamics of simple liquids and colloids
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We conduct molecular-dynamics computer simulations of a system of Lennard-Jones particles, polydisperse
in both size and mass, at a fixed density and temperature. We test for and quantify systematic changes in
dynamical properties that result from polydispersity, by measuring the pair-distribution function, diffusion
coefficient, velocity autocorrelation function, and non-Gaussian parameter, as a function of the degree of
polydispersity. Our results elucidate the interpretation of experimental studies of collective particle motion in
colloids, and we discuss the implications of polydispersity for observations of dynamical heterogeneity, in both
simulations of simple liquids and colloid experiments.
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I. INTRODUCTION

The dynamical behavior of liquids is an area of inten
current interest. Much of this interest has been motivated
the desire to understand the progressively slower and m
complex dynamics of dense, supercooled liquids as they
cooled toward the glass transition@1#. In the last few de-
cades, numerous direct insights on dynamical motion in
uids have been obtained using molecular-dynamics~MD!
computer simulations, in which the spatial coordinates
particles as a function of time are calculated@2#. More re-
cently, experimental studies of colloids have used confo
microscopy to track individual particles@3–6#, thus generat-
ing the same type of data on microscopic particle motions
is obtained from simulations. For studying the glass tran
tion, simulations and colloid experiments therefore serve
important model systems in which the implications of theo
may be directly tested.

In both simulations and colloid experiments, fluids ha
been studied in which the particle size is polydisperse.
simulations, size polydispersity is often introduced to p
vent crystallization of the deeply supercooled liquid~see e.g.
@7#!. In colloid experiments, some degree of polydispersity
always present, and depends on the process by which co
particles are produced. To characterize the polydispersit
colloids, the distributionu(s) of particle diameterss is
commonly found~or assumed! to be Gaussian

uG~s!5
1

dA2p
expF2

1

2 S s2s0

d D 2G , ~1!

wheres0 is the average particle diameter, andd character-
izes the width of the distribution@8#. Polydispersity may then
be quantified by the value of the dimensionless parametc
5d/s0.

In most experimental studies of colloids~see, e.g.,@8#! a
system is regarded as effectively monodisperse ifc,0.05.
For many properties, such as the average liquid struct
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this is a good approximation. However, dynamical prop
ties, especially at the microscopic level, may depend se
tively on the nature of microscopic structural fluctuation
and so may be affected by even small polydispersities
addition, size polydispersity in real colloids leads inevitab
to a polydispersity of mass. However, some models of po
disperse liquids and colloids consist of systems in wh
particle size varies, but not particle mass@7,9#.

In this paper, we seek to isolate and quantify the role
size and mass polydispersity on the dynamics of a sim
liquid system, in particular, to assess the need to incorpo
mass polydispersity when simulating the dynamics of rea
tic systems having size polydispersity. To do so, we cond
MD simulations of a system of particles interacting via t
Lennard-Jones~LJ! potential, polydisperse with respect t
both mass and size, as a function ofc. Our results show tha
a range of dynamical properties~the diffusion coefficient, the
velocity autocorrelation function, and the non-Gaussian
rameter! of a polydisperse fluid are systematically shifte
from the corresponding monodisperse case. We discuss
implications of these results for observations of ‘‘dynamic
heterogeneity’’ in simulations@9,10# and in colloid experi-
ments@5,6#.

II. POLYDISPERSE LENNARD-JONES LIQUID

Since our aim is to study generic effects of polydispers
on liquid dynamics, we chose the well-studied LJ potentia
model interparticle interactions. The LJ potential is popu
for simulations of simple liquids, and there exist many stu
ies with which to compare our results.

In simulations of colloids, the colloidal particles are ofte
modeled as hard spheres, and for many cases, this is a
approximation. However, interactions among colloidal p
ticles may take other forms, and may be explicitly controlle
for example, by attaching soluble polymer chains by one e
to the particle surface to generate repulsion, or by add
nonadsorbing soluble polymers to the suspension to prod
attraction@11#. Though the present paper is motivated by t
recent experiments studying the dynamics of colloidal p
ticles, we do not address the question of how the behavio
a colloidal system depends on the shape of the interpar
©2001 The American Physical Society02-1
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interaction potential. We also do not take into account
influence of a solvent.

We perform equilibrium molecular-dynamics simulatio
in three dimensions of a system ofN54000 particles inter-
acting via the shifted-force LJ potential, a modification of t
standard LJ potential,

Vi j ~r !54«F S s i j

r D 12

2S s i j

r D 6G . ~2!

Here,Vi j is the potential of interaction of two particlesi and
j, separated by a distancer. « characterizes the strength o
the pair interaction and is constant for all particle pairs.
the shifted-force LJ interaction, the LJ potential and force
modified so as to go to zero continuously atr 52.5s0, and
interactions beyond 2.5s0 are ignored@2#.

Polydispersity is introduced through the particle siz
s i j 5(s i1s j )/2 wheres i (s j ) characterizes the diameter o
a particlei ( j ). Particles are assigneds values by random
sampling from the Gaussian distribution in Eq.~1!. We also
impose a mass polydispersity appropriate for the given
polydispersity. The mass of a particlei is mi5m0(s i /s0)3,
wherem0 is the mass of a particle of sizes0. Particle trajec-
tories are evaluated using the leap-frog Verlet algorithm@2#,
using the appropriate value ofmi in the equation of motion
of each particle.

Throughout this paper, we use reduced units. Energ
expressed in units of«, length in units ofs0, the number
density of particlesr in units of s0

23, and temperatureT in
units of «/k, where k is Boltzmann’s constant. Timet is
expressed in units ofAm0s0

2/«. In these units, the time ste
used for integrating the particle equations of motion is 0.

After equilibration, all quantities are evaluated in the m
crocanonical ensemble. We present data forr50.75 andT
50.66, a state not far from the triple point of the monod
perse LJ fluid (r50.85, T50.76) @12,13#. We chose this
state point so as to avoid the dense, deeply supercooled
uid region of the phase diagram of the monodisperse LJ
tem, where spontaneous crystallization could interfere w
the evaluation of equilibrium properties. We conduct se
rate simulations forc50, 0.05, and 0.1.

III. PAIR-DISTRIBUTION FUNCTION, DIFFUSION
COEFFICIENT, AND VELOCITY AUTOCORRELATION

FUNCTION

The pair-distribution functiong(r ) that characterizes th
average liquid structure@14# is shown in Fig. 1 for eachc
studied. The effect of increasing polydispersity is to redu
the height of, and broaden the peaks associated with the
cessive neighbor shells around each particle. However,
mean position of each neighbor shell does not change no
ably.

We test for a dependence onc of the bulk transport prop-
erties by evaluating the diffusion coefficientD. We obtainD
from ^r 2(t)& using the Einstein relation,

D5 lim
t→`

^r 2~ t !&
6t

. ~3!
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Figure 2 shows the dependence ofD on c. We find that at
fixed r andT, D decreases systematically by about 10% ac
increases from zero to 0.1.

Figure 3 shows the dependence onc of the velocity auto-
correlation functionc(t) @13#

c~ t !5
^v~0!•v~ t !&

^uvu2&
, ~4!

wherev(t) is the velocity of a particle at timet. D is related
to the integral ofc(t), and consistent with the decrease ofD,
the negative part ofc(t) becomes larger in magnitude wit
increasingc. This trend reflects an increase withc of the
strength with which single-particle dynamical properties
the system are retained on a time scale comparable to
collision time.

FIG. 1. Effect of polydispersityc on the average liquid structur
as measured byg(r ).

FIG. 2. Fractional deviation withc of D relative toD0, its value
for a perfectly monodisperse system.
2-2
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IV. NON-GAUSSIAN PARAMETER

The general non-Gaussian parameteran(t) is defined for
integersn>1 as@13#

an~ t !5
^r 2n~ t !&

cn^r
2~ t !&n

21, ~5!

wherecn5@1•3•5•••(2n11)#/3n. ^r 2n(t)& is the ensemble
average of the 2nth power of the particle displacements aft
a time t @15#,

^r 2n~ t !&5K 1

N (
i 51

N

ur i~ t !2r i~0!u2nL . ~6!

Here, r i(t) denotes the position of particlei after a timet
following a reference timet50 in equilibrium.N is the total
number of particles in the system.

The functions^r 2n(t)& also represent the even momen
of Gs(r ,t), the self part of the van Hove correlation functio
@14#. For an isotropic fluid made up of particles with sphe
cally symmetric interactions, we can restrict our attention
Gs(r ,t), the probability density that a particle located at t
origin at timet50 will be found withindr of a distancer at
time t @16#

Gs~r ,t !5K 1

N (
i 51

N

d~r 2ur i~ t !2r i~0!u)L . ~7!

In terms ofGs(r ,t), ^r 2n(t)& may be written

^r 2n~ t !&54pE
0

`

r 2nGs~r ,t !r 2dr. ~8!

In the case of an ideal gas of noninteracting particles h
ing a Maxwell-Boltzmann velocity distribution@14#, Gs(r ,t)
is a Gaussian function ofr

FIG. 3. Effect of polydispersityc on the velocity autocorrelation
function c(t).
01140
o

v-

Gs~r ,t !5S bm

2pt2D 3/2

expS 2
bmr2

2t2 D , ~9!

where b51/kT. In this case, it is readily shown tha
^r 2n(t)&5cn^r

2(t)&n and soan(t)50. For systems in which
correlations of particle motions are prominent,Gs(r ,t) is not
Gaussian, and the deviation ofan(t) from zero serves to
quantify the deviation ofGs(r ,t) from the Gaussian form.

In the present paper we present results fora2(t), the most
commonly calculated non-Gaussian parameter

a2~ t !5
3^r 4~ t !&

5^r 2~ t !&2
21. ~10!

In Fig. 4, we plota2(t) for three different values of polydis
persity c50, 0.05, and 0.1. Qualitatively, there are two e
fects induced by increasing polydispersity:~i! the character-
istic, intermediate-time peak ofa2, at approximatelyt51,
increases in magnitude asc increases; and,~ii ! the value of
a2(t) does not start from zero in the limitt→0 whencÞ0.
We clarify each of these effects in turn below.

To distinguish the influence of mass and size polydisp
sity separately, we conduct two simulations, one~‘‘size
only’’ ! for a system in which the size polydispersity isc
50.1, but in which all the particle masses are set equa
m0; and another~‘‘mass only’’! for which the mass polydis-
persity is taken from our previous ‘‘mass and size’’c50.1
case, but with all the particle sizes then set equal tos0. We
compare in Fig. 5, the resulting behavior ofa2 as a function
of t with the behavior found for the monodispersec50 case;
and with the case where both size and mass are polydisp
with c50.1.

First we focus on the behavior observed near the ma
mum of a2(t) at approximatelyt51. Although the mass-
only curve in Fig. 5 lies above that of the monodisper
system, it still lies well below that corresponding to polydi
persity of both mass and size. Hence, mass polydispersi
not solely responsible for the increase of the maximum ofa2

FIG. 4. Variation ofa2(t) with c.
2-3
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with c. Interestingly, the size-only curve is also well belo
that corresponding to polydispersity of both mass and s
Even the sum of the deviations from the monodisperse c
of the mass-only and size-only curves, is insufficient to
count for the height of the curve for the system with po
dispersity of both mass and size. That is, polydispersity
both mass and size together has a greater impact on dyn
cal properties at intermediate times than can be obta
from polydispersity of mass or size alone.

Next, we turn our attention to the behavior ofa2 as t
→0. ~For the remainder of this paper, we will denote t
limit as t→0 of a2 as a2

+ .! In MD simulations of a one-
component LJ system@15,17# and of a binary LJ mixture
@7,10#, a2

+ 50. However, in the binary LJ mixture studied
the two species differ in size only and have the same mas
contrast to our system in which the masses of particles d
in accordance with the polydispersity of their sizes. Two
the curves in Fig. 5 (c50 and ‘‘size only’’! correspond to
systems with no mass polydispersity, and in both casesa2

+

50. For the other two curves (c50.1 and ‘‘mass only’’!, a2
+

adopts the same nonzero value. It is clear that the mass p
dispersity is solely responsible for the behavior ofa2

+ .
As t→0, the atomic motions in the fluid correspond

those of free particles, and the distribution of velocities is
Gaussian function given in Eq.~9!. For a monodisperse sys
tem, this means thata2

+ 50. For a system with polydispers
masses, each particle of a given mass also samples
Gaussian velocity distribution given in Eq.~9!. However, the
Gaussian distributions sampled will have different widths
particles of differentm. Consequently, the form of the tota
Gs(r ,t) function is not in general Gaussian because it i
superposition of individual Gaussians of different width. T
result is a nonzero value ofa2

+ , as found in our simulations
Since the limitt→0 corresponds to the free-particle lim

for atomic motion, we may calculate the non-Gaussian
rameter for a polydisperse system ast→0 exactly. Consider

FIG. 5. a2(t) for several types of polydispersity, demonstrati
that polydispersity of both particle size and mass has a greater
pact, compared to the monodisperse case, than either size-on
mass-only polydispersity.
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a system ofN particles in which there areM species~labeled
by index j ) each havingNj particles of massmj . The mo-
ments^r 2n(t)& may be found using a modified form of Eq
~6! appropriate for anM-component system:

^r 2n~ t !&5K 1

N (
j 51

M

(
i 51

Nj

ur i~ t !2r i~0!u2nL . ~11!

Equation~11! may be rewritten as

^r 2n~ t !&5(
j 51

M

f j^r
2n~ t !& j , ~12!

where f j5Nj /N is the fraction of particles of speciesj and

^r 2n~ t !& j5K 1

Nj
(
i 51

Nj

ur i~ t !2r i~0!u2nL , ~13!

where the sum is over particles only of speciesj. For each
species, the atomic motion ast→0 is also described by Eq
~9! with the appropriate value ofm5mj , and hence, the
moments^r 2(t)& j and ^r 4(t)& j may be found in the limitt
→0 by substituting Eq.~9! into Eq.~8! for eachj. The result
is

^r 2~ t !& j5
3t2

bmj
~14!

and

^r 4~ t !& j5
15t4

b2mj
2

. ~15!

The value ofa2
+ for the multicomponent system may the

be found by using Eqs.~12!, ~14!, and~15! in Eq. ~10!,

a2
+ 5

(
j 51

M

mj
22f j

S (
j 51

M

mj
21f j D 2 21. ~16!

This expression highlights thata2
+ may not equal zero for a

system with polydisperse masses.
If the polydispersity is expressed as a continuous distri

tion of massesf(m), Eq. ~16! generalizes to

a2
+ 5

E
0

`

m22f~m!dm

S E
0

`

m21f~m!dmD 2 21. ~17!

Experimental studies of colloids typically characteri
polydispersity not in terms of the masses, but in terms of
particle diameters, described byu(s). Assuming that the
particle massm is proportional tos3, and thatf(m) dm
5u(s)ds, Eq. ~17! becomes

-
or
2-4
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a2
+ 5

E
0

`

s26u~s!ds

S E
0

`

s23u~s!ds D 2 21. ~18!

Note that the value ofa2
+ therefore depends only on th

shape of the mass distribution function, and is otherwise c
stant for all choices ofr, T and interparticle interaction.

We apply the above result to the case of the Gaus
distribution of particle diameters given in Eq.~1!. We substi-
tute u5uG with s051 in Eq. ~18! and calculatea2

+ as a
function of c ~Fig. 6!. We evaluate the integrals in Eq.~18!
numerically, replacing the limits of integration (0,`) with
@0.01s0,2s0#. This avoids the divergence of the integran
at s50, and in any case is more physical, since a real
tribution of particle sizes would have a nonzero lower bou
and a finite upper bound. As seen in Fig. 6,a2

+ }c2 for small
c, but increases more rapidly than this forc.0.1 The pre-
dictions of Eq.~18! are in agreement with our simulatio
results. Forc50.05, Eq.~18! givesa2

+ 50.023 44, while our
simulation gives a2

+ 50.027; for c50.1 we obtain a2
+

50.107 81 and 0.113, respectively.
We may also use Eq.~18! to calculatea2

+ for a system in
which the distribution of sizes is not Gaussian. For exam
Sear@18# simulated a system of hard spheres, polydispers
both size and mass, using a ‘‘hat’’ function of widthw:
u(s)5(ws0)21 for s0(12w/2)<s<s0(11w/2), and
u(s)50 otherwise, andm;s3. For this case, we are able t
solve Eq.~18! exactly, giving

a2
+ 5

~11v/2!52~12v/2!5

5v~12v2/4!
21. ~19!

For v50.3, Eq. ~19! gives a250.069 16, while for v
50.7, a250.4222, in agreement with the simulation resu
in Fig. 6 of Ref.@18#.

FIG. 6. Log-log plot ofa2
+ as a function ofc for a Gaussian

distribution of particle diameters.
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n-

n

-
,

,
in

V. DISCUSSION

When a2 has been extracted via confocal microscopy
colloid experiments, values as high asa2

+ '1.5 have been
observed@5,4,3#. In these studies, the polydispersity rang
from c50.01 to 0.1. Kasperet al. @3# observed thata2

+ is not
zero for all values of the volume fraction occupied by t
colloidal particles. Marcuset al. @4# found thata2

+ is nonzero
and increases with increasing volume fraction. Weekset al.
@5# found that ofa2

+ is approximately constant for smal
volume fractions but grows for higher-volume fractions.
general,a2

+ was found to increase with the volume fractio
occupied by the colloid particles, in contrast to the abse
of any density dependence in Eq.~18!. In the case of real
colloids, the behavior ofa2 as t→0 is complicated by the
fact that solvent-induced hydrodynamic forces among p
ticles potentially introduce strong, short-time-scale corre
tions of particle velocities, invalidating the free-particle a
sumption that is the basis of Eq.~9!. The large difference
between the behavior ofa2

+ found for these systems, and th
predicted by Eq.~18! demonstrates that polydispersity alon
cannot account for the observed values ofa2

+ , and that hy-
drodynamic effects indeed dominate the short-time dyna
cal behavior of real colloids.

At intermediate times, we find that the peak value
a2 increases withc. The maximum value ofa2 has been
shown@10# to correlate to the degree of dynamical heterog
neity present in the system: that is, transient, spatially co
lated groups of particles whose characteristic structural
laxation time differs from the mean. Our results therefo
suggest that dynamical heterogeneity, prominently obser
at lowerT and higherr than studied here, may be enhanc
as polydispersity increases. One source of this enhancem
may be the influence of mass polydispersity on sponta
ously occurring density fluctuations, that in turn control t
development of dynamical heterogeneities. In general,
occurrence and quantification of dynamical heterogeneity
a polydisperse system is likely to be more complicated th
in a monodisperse~or even bidisperse! system. At the same
time, since we observe a slowing of the dynamics w
increasing polydispersity, the dynamical heterogene
may be more prominent and longer lived in a polydispe
system, and so may facilitate the study of these comp
structures.

In summary, we have illustrated that a system of partic
with polydispersity of both mass and size is a more realis
model~compared to models without mass polydispersity! for
studying the dynamics of colloids in MD simulations. O
results show that typical polydispersities found in real s
tems may induce an influence of the order of 10% on
namical properties. This is a small effect for studies, such
those near a glass transition, where relaxation times m
vary by several orders of magnitude. At the same tim
knowledge of the amount and direction of the impact
polydispersity on dynamics is required because polydisp
sity is so commonly found in systems studied both in sim
lations and experiments. This knowledge is also crucial
2-5
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precise tests of theories, particularly those formulated
perfectly monodisperse systems. We also note that our re
may be tested experimentally in colloids by deliberat
varying the polydispersity of the studied colloidal syste
Indeed, by varyingc alone it might be possible to study a
‘‘isothermal-isochoric glass transition’’~i.e. a glass transition
at both fixedT andr) by setting up an appropriate series
A.

,

01140
r
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colloidal systems where the polydispersity is progressiv
increased.
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